

Abstract

Abstract – Scrabble is a well-known word game in

which two to four players vie for victory by creating words

with tiles placed onto the board with rules in similar

fashion to those in crosswords. There are several other

web apps that exist to help players, but require manual

input of letters to create a logical view of the board. This

paper presents a Scrabble image processing method to

create a logical view of snapshot of a Scrabble game

board, to be used by a Scrabble assistant or Scrabble

solver for assistance for a player. In test images, this

algorithm was able to digitize boards with a 94%

accuracy on average, and correctly identify characters

with a 67% accuracy on average, this can be greatly

improved with a better OCR method; using a third party

OCR, 87% accuracy classification of characters is

achievable.

1. Introduction

Scrabble is a well-known word game in which two to

four players take turns vying for victory by creating words

in turn using a set of seven letter tiles and placing them on

a grid presented by the board game. Rules for placement of

letters follows similarly to crosswords. There are similar

games including Words with Friends. There are also

Scrabble solvers, such as http://www.scrabulizer.com/

exist to help players with their play. However, they do

require manual input of the current board to enable their

utility. Manual input from users is tedious and

cumbersome. This paper presents a Scrabble image

processing algorithm for creating a logical representation

of a Scrabble board for use in any application, including

Scrabble solvers.

2. Scrabble Image Processing Algorithm

There are several steps in the Scrabble Image

Processing Algorithm, henceforth known as the image

processing algorithm or algorithm, and elements of the

algorithm process when produced can be told from the

perspective of us as the algorithm, therefore we. The

algorithm’s steps include, normalization, segmentations,

perspective correction, grid placement, optical character

recognition, logical representation of board. Now, let us

bring this quixotry to fruition, before we start studying

zymurgy!

2.1. Normalization

Load the image, convert to grayscale, and then use an

adaptive histogram equalization to account for glares,

flash, and other flaws and/or variations in the image.

A requirement to normalize the image such that tiles are

30 pixels wide, the algorithm creates an estimate from

empty squares from the image. To locate these empty

squares on the Scrabble board, maximally stable extremal

regions (MSERs) are found. However, we put a restriction

on these regions, they cannot be larger than 1 square of a

board. There are 15 rows and 15 columns on a Scrabble

board, giving us 225 squares possible. Since there are 225

squares, we cannot allow any region to be more than

1/225th of the area of the total image. Another restriction

we add to the regions are they need to be square, therefore

we do not allow the height and width of these regions to

not differ by more than 0.05%.

Given these regions with their restrictions, take the

median width of these regions and resize the image such

that tiles are 30 pixels wide.

Figure 1 - Square MSERs

Scrabble Board Automatic Detector for Third Party Applications

David Hirschberg

Computer Science Department

University of California, Irvine

hirschbd@uci.edu

http://www.scrabulizer.com/

Figure 2 - Median of Square MSERs

2.2. Segmentation

Now that the board is resized, we will segment the

board from the background. There are two outcomes to

this, in one case we will have just our 15x15 square board

with nothing else, or we will have the entire board,

including the letter counts and Scrabble logo. In the latter

case, we will take care of that in the grid fitting section, for

now assume we will have the former case only.

Once the image has been resized, we will perform a

canny edge detection, giving us binary image of edges.

Figure 3 - Canny Edges

We will dilate the image using a vertical and horizontal

morphological structuring element (STREL) with a 3 pixel

length. After dilation we will fill in holes. This will give us

several closed regions in the image.

Figure 4 - Dilated Edges

Next perform two erosions with a diamond shaped

STREL with a single pixel radius. This will separate

regions that are thinly connected, such as the Scrabble

logo and the actual area of play. Then we extract the single

largest blob from this binary image.

Our largest blob is now our game board. Note that the

board is a quadrilateral in any perspective.

Figure 5 - Segmentation Mask

2.3. Perspective Correction

Photos of a Scrabble board are rarely from a directly

overhead view; they usually have some other perspective.

Given a quadrilateral for our board, we will transform this

into a square, where the known points of the game board

are the corners of the quadrilateral from the original

image. These are then transformed such that the corners of

the quadrilateral become the corners of a square. Crop the

image around the square, and we are left with an overhead

view of the board.

Figure 6 – Perspective Corrected Image

Figure 7 - Perspective Corrected Mask

Figure 8 - Area of Play Image Overhead

2.4. Grid Placement

The algorithm has so far given us a cropped image

resized such that tiles are 30 pixels wide and viewed from

directly overhead. Now the algorithm needs to separate the

board into a 15x15 grid where each cell consists of one

square or tile.

We find MSERs just like before, and they will be square

as well. The grid is then placed using a k = 15, k clustering

of the square regions, giving us 32 lines, 16 in the

horizontal direction and 16 in the vertical direction giving

us a constrained 15x15 grid. This does account for when

the cropped image has the Scrabble logo on the side by

only placing the grid on the actual area of play.

Thus, the algorithm given us an image divided by the

rows and columns of the area of play.

Figure 9 - Grid Placed

2.5. Optical Character Recognition (OCR)

The algorithm has given us a gridded board, and we

now have individual access to every tile on the board at

will at this point.

Our algorithm’s self-made OCR method is mentioned

here, look at future work for alternates that do work better.

For every tile on the board, with coordinates (i , j), we

will run a k nearest neighbor classification algorithm to

classify tiles.

Figure 10 - Supervised Data

Our data is taken from a high quality image of tiles.

After extracting the individual tiles from the image, we

create our data from extracting the letter form an

individual tile. Given an image of a tile, use an adaptive

histogram equalization, just like we did at the beginning of

the algorithm for normalizing the board. Find the center of

mass of the tile, based upon pixels under a threshold.

Extract the pixels under the threshold value for the tile,

note that letters are darker than the tile itself. Place the

extracted pixels in the center of the image.

Now that we have a single letter placed in the center of

the image, we want to create more data that can account

for several variations, the tile was placed crooked in

rotation, was slightly offset from the center of the square,

the camera was not in perfect focus and the image is

slightly blurry. We create more data by copying our

original reference data of the centered letter and iteratively

rotating, blurring, and translating the letter in its 30x30

square. This gave us in our implementation 80,704 letters

to work with.

Now that we have our data, for each tile, we push it

through the same algorithm for which we created our data,

but without the rotation, blurring, or translation. This gives

us a meaningful image that we can run our kNN

classification algorithm, we ran it with k = 3.

 This allows us to classify our tiles.

Figure 11 - Tiles to go through kNN

Figure 12 - Classification of Image

2.6. Logical Representation

Once we have gotten all of our squares identified, we

have them stored as a 15x15 character matrix in

MATLAB. We can store this in any format we wish, and

will be fully up to the reader to implement at will for

whichever application they wish to use it in.

3. Results

The Scrabble image processing algorithm was

tested on a seven images all taken from Scrabble

sweepstakes, which contained images of the full area

of play with some background taken at an angle.

The rate at which tiles are correctly classified are

shown in figure 13, with an average of 67%.

However, game square classification rate is at a 94%

classification rate.

Figure 13 – Tile Classification Rate of Test Images

4. References

[1] Chen, Huizhong, et al. “Robust Text Detection in Natural

Images with Edge-Enhanced Maximally Stable Extremal

Regions.” Image Processing (ICIP), 2011 18th IEEE

International Conference on. IEEE, 2011.

[2] Paul Rivas, “Sunday Scrabble Sweepstakes.” One Sorry

Blog. WordPress. 2007.

https://onesorryblog.wordpress.com/category/sundayscrabbl

e-sweepstakes/

[3] Warburton, Tim. "OCR." OCR. N.p., n.d.

http://www.caam.rice.edu/~timwar/CAAM210/OCR.html

[4] Brummitt, Liam. “Scrabble Word Recognition” Scrabble

Referee, https://www.youtube.com/watch?v=c3ywTfeTqOE

[5] MATLAB and Statistics Toolbox Release 2015b, The

MathWorks, Inc., Natick, Massachusetts, United States.

https://onesorryblog.wordpress.com/category/sundayscrabble-sweepstakes/
https://onesorryblog.wordpress.com/category/sundayscrabble-sweepstakes/
http://www.caam.rice.edu/~timwar/CAAM210/OCR.html
https://www.youtube.com/watch?v=c3ywTfeTqOE

5. Appendix

Note, images are ordered column by column, top down

from 1 through 7

Test Images

Square MSERs from Original Images

Canny Edges

Dilated Canny Edges

Filled Regions Without Largest Blob Extraction

Grid Placement

Test Images Classified with Grid

Test Images Classified

