
 

 

Abstract 

 
Abstract – In an era of consumerism and instant 

gratifications, time is of the essence. Thus, any time waiting 

for one task to complete is time that could be spent on a new 

task. Our research aims to focus on aggregating wait time 

data to provide people with real-time information about 

how long a single task will take. In a study by Long Range 

Systems, LLC, a supplier of wait time “buzzers”, it is found 

that nearly 56% of waiting times at restaurants are 20 

minutes or more. [1] This does not even include time to 

actually eat the meal, and thus calls for some solution to be 

created. There are already existing applications that have 

attempted to solve this problem, but have only gotten as far 

as relaying only the current wait time to the consumer, 

rather than predicting wait times later in the day. [2][3] 

There has been some work in wait time estimation, with the 

state of the art being LineKing [4], but there are some 

drawbacks that we improve and build upon. We have 

created a system that collects real-time data, and relays to 

the consumer both the current wait time, and projected wait 

times throughout the entire day. 

WaitLess is able to not only beat this upper limit, but able 

to do far better, by being able to provide mean absolute 

errors (MAE) of less than 1 minute in a 10-minute 

prediction. To reiterate, LineKing is able to provide mean 

absolute errors of 2-3 minutes, [4] Waitless beats it out with 

mean absolute errors of less than 1 minute. 

1. Novelty/Motivation 

1.1. Importance of Problem 

In an era of consumerism and instant gratification, time is 

of the essence. Thus, any time waiting for one task to be 

complete is time that could be spent on a new task. Our 

research aims to focus on aggregating wait time data to 

provide people with real-time information about how long 

a single task will take, either currently, or anytime that 

particular day. To make things less abstract, we are 

focusing taking wait time data for restaurants and other 

food service businesses based on user data, and providing 

an entire user base with live waiting time data for a given 

business based on the collected data. 

 

This research is inspired by the idea that if a person can 

make a judgement call on if they have time to wait to eat at 

a restaurant or not, they can develop a more efficient daily 

routine. In a study by Long Range Systems, LLC, a supplier 

of wait time “buzzers”, it is found that nearly 56% of 

waiting times at restaurants are 20 minutes or more. [1] This 

does not even include time to actually eat the meal, and thus 

calls for some solution to be created. 

 

There are already existing applications that attempt to solve 

this problem, but have only gotten as far as relaying only 

the current wait time to the consumer, rather than predicting 

wait times later in the day. For example, “What’s The Wait” 

is an application that takes restaurant listings from Yelp and 

Google and asks users to submit their current wait time; 

similarly, Disneyland has an app that relies on users to 

submit their wait times for rides. [2][3] One critical point 

that we are looking to improve upon is the idea of the user 

submitting data: we want to get passive data from the users 

so that the aggregate data is far more saturated (allowing for 

better estimation of wait times), instead of relying on a user 

always remembering to open our application. In terms of 

relating to search engines, a user will be able to query data 

from a variety of local restaurants to see what the current 

wait times are, as well as what the wait times are historically 

at a particular time. This ties into the idea of hyperlocal 

search, a next generation search technique. 

1.2. Justification via Beating the State of the Art 

According to a well cited paper on “How long should a 

customer wait for service” [5], “Analysis of the data reveals 

that the “ideal” waiting time… is significantly less than the 

current corporate waiting time policy.” The paper goes on 

to explain that having an ideal waiting time creates more 

profit as a function of customer satisfaction. 

 

According to another well cited paper from “Tradeoffs 

Between Profit and Customer Satisfaction for Service 

Provisioning in the Cloud” [6], There is a tradeoff between 

customer satisfaction and profit, and in this paper’s case, 
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customer satisfaction has a direct correlation with amount 

of time waiting, even in this high speed environment of high 

performance distributed computing. We need to take into 

account of different methods of simulations and how to 

create a system that can be easily used in different 

environments, ranging from human to human wait time 

interaction, and computer agent to computer agent 

interaction. 

 

In academics there have been some attempts at wait time 

estimation, whose abilities far surpass commercial 

attempts. LineKing is the state of the art when it comes to 

wait time estimation. LineKing boasts being able to provide 

a mean absolute error of less than 2-3 minutes when 

predicting 10 minutes into the future [4]. WaitLess is able 

to not only beat this upper limit, but able to do far better, by 

being able to provide mean absolute errors (MAE) of less 

than 1 minute in a 10-minute prediction. To reiterate, 

LineKing has a MAE of 2-3 minutes, [4] Waitless beats 

it out with a MAE of less than 1 minute. 

 

Our system will produce useful data that will inform the 

consumer of both current wait times and projected wait 

times throughout the day so that the consumer can make 

better informed decisions of how to best manage and spend 

their time. 

2. Technology 

2.1. Data Sources 

Data has to come from somewhere. We require knowledge 

of what time a customer entered or exited a particular 

location and how long they spent there on what particular 

day. It is important to note that not every customer must be 

tracked, but the more data we have, the stronger are results 

become. There are several avenues from which this data can 

be acquired. 

 

2.1.1 Customer Manual Feedback 

We could ask customers to report manually how long then 

spent waiting at a location. This will not be pursued as we 

wish to be passive. 

 

2.1.2 RF Based 

We could install or have access to an RF chip reader in 

every single commercial location. Customers could be 

tracked throughout the building using RADAR as presented 

as “an in-building RF-based user location and tracking 

system”, the biggest downside is the cost and 

ubiquitousness of such systems. [7] 

 

2.1.3  Video based 

We could track customers based on a video feed from every 

locations surveillance footage, we could capture what time 

they enter and exit a location purely by tracking that person 

in real time using a monochromatic video provided from the 

aforementioned video cameras. [8] We would then have the 

required data to leverage the outcome we desire. 

 

2.1.4 High Precision GPS Tracking 

We can track every customer’s GPS location from their 

smartphone. We would have access to all of their location 

data from which we can gather how much time was spent 

at various locations, including commercial locations where 

wait times are of interest. We would need access to 

everyone’s location data, via some application that the user 

would need to install. [9] 

 

2.1.5 Geo Fence 

We could have a geo fence as described by a geographical 

polygon that encompasses a location of interest, in this case 

a store front. When a customer enters a location as defined 

by the geo fence, it is taken note of. When a customer than 

leaves the geo fence, we know when and how long the 

customer spent in that particular location. This would 

however still require access to GPS location, but would 

instead only fire at threshold crossings, greatly decreasing 

battery drain and computational complexity. [10] 

 

2.1.6 Geo Fence via Wi-Fi 

We can go further than geo fencing, by accessing network 

proximity via Wi-Fi connections. The geo fence is now 

when the customer connects and disconnects from a Wi-Fi 

router at a particular location. When a particular smart 

device connects and then disconnects from a router that acts 

as the threshold of the geo fence. [10] A filter would be 

needed to account for brief connections and other outliers. 

This method does not require access to any permissions on 

any smart device, rather the router is all we would need 

access to. 

 

We will be using a geo fence approach using Wi-Fi as our 

data source. This will allow us to access all the appropriate 

data passively without any user interaction. We would also 

be able to do this without installing and requiring any 

software on customer phones. This will allow for a more 

ubiquitous tracking of customers to produce the best results. 

2.2. Storage 

We use a standard SQL-based data store. Its purpose would 

be to hold the data after being processed by our system to 

be in the format the prediction algorithm requires. 

2.3. Software 

2.3.1 Web Server 

The current webserver is NGINX. NGINX is known for 

being high-performance and very stable. More importantly, 

NGINX uses an asynchronous, event-driven architecture, 



 

 

and as such is far more scalable than the traditional thread-

based Apache server software. This is very important for a 

system such as ours that would ideally be handling 

thousands of requests per minute as users send time data to 

and receive predictions from our server. 

NGINX communicates to the backend Python code using 

uWSGI. uWSGI runs our Python code and conducts I/O 

through a socket that NGINX connects to. 

 

2.3.2 Wait Time Predictor 

The wait time projection estimation is created via 

MATLAB. A Python MATLAB engine is installed on our 

webserver to run the required scripts and functions to 

produce the desired results to be passed back to Python 

function that called the MATLAB function to produce the 

predicted wait times for the day. 

 

2.3.3 Website UI/UX 

The home page for the website hosts a Google Map with a 

search box, employing the Google Places library and the 

Google Maps JavaScript API. Respectively, these APIs are 

used for suggesting establishments to users with an 

autocomplete feature, and for retrieval and presentation of 

geographical data about the establishments of interest. 

 

The webpage that presents the proper data to the user uses 

HTML, CSS, and JavaScript to create a dynamically 

generated web page that serves the user the correct 

information in a useful manner. A graph is presented to the 

user using Charts.js open source JavaScript library to 

generate the chart in a dynamic modern fashion. 

2.4. Algorithms 

2.4.1 Wait Time Predictor 

There are many ways to evaluate or estimate time series 

data, which is the type of data we have. The theory and 

many methods are taken from Peter Brockwell’s Time 

series: theory and methods. [11] The kNN Estimator is 

based on a kNN classification algorithm that returns the k 

nearest neighbors in ranked order, but instead of returning 

a mode of the top k, we create our estimation based on the 

top k nearest neighbors based on our distance metric. 

Details will be expanded upon in the implementation and 

evaluation section. The state of the art is shown in [4], 

which we surpass using the same evaluation metric. 

2.5. Evaluation 

In order to evaluate the strength and/or accuracy of any 

prediction produced by any algorithm, we need a measure. 

We adopt the measure as define in [4], where we take the 

mean absolute error (MAE) on some given scale, whether 

it is the next 10 minutes, the next hour, or till the end of the 

day. 

𝑀𝐴𝐸 =
1

𝑛
∑|𝑓𝑖 − 𝑦𝑖|

𝑛

𝑖=1

 

Equation 1 - MAE 

 

3. System Architecture 

3.1. Data Source Feed 

The data source, no matter which it is, will deliver to the 

database timestamped durations of amount of time spent at 

a location. It is a one-way communication, since there is no 

information needed from any other piece of the system. 

3.2. Database 

We have stored a large number of simulated data points that 

our prediction algorithm uses. In a working version of the 

product, we would likely have two databases running 

simultaneously. 

 

One of the databases would handle real-time storage of user 

data. Ideally, hundreds or thousands of users would be 

contacting the service at any point in time, so we would be 

using a database suited for high performance, in-memory 

data storage, such as Redis. This would allow collection and 

handling of large amounts of user data, and would be very 

scaleable. 

 

The other database would be a standard SQL-based data 

store. Its purpose would be to hold the data after it has been 

processed by our system to be in the format the prediction 

algorithm requires. 

3.3. Webserver 

NGINX uses an asynchronous, event-driven architecture, 

that would easily handle thousands of requests per minute 

as users send time data to and receive predictions from our 

server. NGINX communicates to the backend Python code 

using uWSGI. uWSGI runs our Python code and conducts 

I/O through a socket that NGINX connects to. 

 

We have an API that our data displaying webpage calls on 

load, with a business associated with it. Which in turn will 

call our Python code to grab the appropriate data to send to 

our wait time predictor in our MATLAB engine running in 

our python environment. 

 

Once the data is received from the MATLAB wait time 

predictor, the projected data is sent to the webpage for 

display for the user. 



 

 

3.4. Wait Time Predictor 

When the wait time predictor, which is running within a 

MATLAB engine, is called from python on the webserver, 

we are given both the current day’s data and the historic 

data from that location. We then pass this to our internal 

estimator. 

3.4.1 kNNE: k Nearest Neighbor Estimation 

Given the current day’s data and historic data for a 

particular location. Our estimator will produce projected 

wait times for the rest of the day. With a granularity for the 

time of day of 10 minutes. 

 

Once the kNNE has given us internally our projection for 

the day, we pass this back to the python function to do with 

it as is required. 

3.5. Website and User View 

3.5.1 Search 

The home page with which WaitLess users interact contains 

a Google Map and a search box. Users can query this search 

box for establishments of interest via title or category, and 

they may append an address to bias the search results in 

favor of the address they enter. If no such address is 

appended to their query, the results will instead be biased in 

favor of the relevant locations that are on display in the 

map’s viewport at the time of the query. In addition, the 

search box has an autocomplete feature, which also 

suggests relevant results inside or near the position of the 

Google Map’s current viewport.  

Once the user enters a query, and if there are matching 

results, photographic markers for the matching 

establishments will be placed on their locations on the map. 

The user can then click on those markers to retrieve the 

WaitLess data associated with them. 

 

 
Figure 1 - Search Box for Query Input 

 

A demonstration of Google’s autocomplete feature on our 

map. The map has been cropped out for the legibility of the 

text shown above, but Irvine was in the viewport of the map 

at the time of typing into the search box. Here, users are 

encouraged to choose among categorical searches like 

“coffee shops” and specific establishments in viewport of 

the map like Peet’s Coffee and Tea. 

 

3.5.2 Data Retrieval for Presentation 

When a query is entered and a map icon is clicked, the 

corresponding page for that result is generated through a 

GET request; this means that the URL for the page indicates 

both the establishment name and the establishment ID so 

that the server can retrieve the related data. In order to 

generate the right data, placeholders on the HTML page that 

display the data are filled as follows: 

 

The title placeholder, which states the name of the 

establishment, is pulled from the Google API and is sent to 

the GET request via the map interface. It is then placed into 

the header as shown in Figure 2. Beneath the title header is 

the relevant wait time data for the establishment. 

 

All of the data related to wait times is provided by the server 

via the GET request’s establishment ID. The server sends 

the page an array list that contains a wait time for every 10-

minute increment of the 24-hour day, all tied to the 

establishment ID. The array list also contains the current 

wait time and the wait time 10 minutes from the time of the 

request. These points are used to fill the placeholders for 

“Current Wait Time” and “Wait Time in 10 Minutes”.  

 

3.5.3 Presentation of Retrieved Data 

The WaitLess data presented after a user clicks on a 

location on the Google Map comprises an estimation of the 

current wait time, an estimation of the wait time ten minutes 

after the user selects the location, and a chart of predictions 

of wait times for the rest of the current day.  

 
Figure 2 - Sample Prediction Chart, for Starbucks in the 

UC Irvine Student Center, Queried at 9:00 am 

 



 

 

4. Implementation and Evaluation 

4.1. Data Source Feed 

Ideally the implementation of the data source feed would 

have been geo fencing using Wi-Fi connection data, 

however in our quest to get this data from OIT at UC Irvine, 

we were unable to get the data source in time. As OIT noted 

to me, the person who would be able to scrub the data so 

that privacy standards were met, was on vacation until the 

start of the next quarter. 

We needed to still have a data source, so we went with 

simulated data, where the simulated historic data was 

created where each day would have a random number of 

peaks, in the range of 2 and 8 peaks. Where each one would 

have a mean time randomly between 11am and 10pm, with 

a standard deviation between half an hour and 5 hours, with 

a maximum waiting time associated with that peak between 

2 minutes and 10 minutes. We then used this data as if it 

was gathered live from a proper data source. 

Every piece of data attached to it would have a business id 

associated with it, 27 alphanumeric characters as a string, a 

unique identifier UUID, which is 32 alphanumeric 

characters as a string, with a corresponding timestamp, and 

duration. 

4.2. Database 

Since we are currently only using simulated data, the 

database implementation is slightly modified for usage of 

only simulated data for now. We have a standard SQL-

based data store. Our table has 5 columns, Business ID (32 

chars), UUID (27 chars), a timestamp (timestamp), duration 

(int).  

4.3. Webserver 

A major difference between our current version and the 

ideal production version of the backend software is our 

algorithms running in the MATLAB Engine. Since 

MATLAB was more ideal to work in when creating the 

algorithms, we left that code alone and instead decided to 

communicate with the MATLAB Engine via Python. The 

ideal production version would have this MATLAB code 

translated to Python (or even C++) to gain higher 

performance and remove the need to communicate between 

two different runtime engines. 

4.4. Wait Time Predictor 

The main part of the wait time predictor is the kNNE, which 

we will now go into further detail. Work is based upon [11] 

[12] [13] [14] [15] 

 

4.4.1 kNNE: k Nearest Neighbor Estimation 

The point of this method is to predict the rest of the day, 

based upon the entire day up until the current time, and all 

previous historic data for this location. To this end we are 

going to identify the k nearest neighbors (kNN) for the 

current query. [11] [12] Similarity will be defined in a 

manner most useful for projection estimation. [13] The 

similarity or neighborness function will be defined as 

follows, 

𝑑𝑖𝑠𝑡(𝑣, 𝑤, 𝑡) = √∑([𝑣(𝑖) − 𝑤(𝑖)] ∗ 𝑔(𝑖))2
𝑡

𝑖=0

 

Equation 2 – Similarity Distance Function 

 

𝑔(𝑥) = 𝑥3 

Equation 3 – Weighting Function for Distance 

 

Equation 3 lets more recent data points of the day have a 

greater weight within the distance function. [14] A simple 

reasoning would be, the wait times as 3am have little effect 

on the wait times at 1pm, rather what occurred at 12:50pm 

will have a greater effect on 1pm than 12:30pm would have 

on 1pm. The distance function takes the weighted 

Euclidean distance from the beginning of the day until the 

current time for a particular historic day, where the 

weighting is proportional to the cube of the time since the 

start of the day. [15] 

 

We take the top k, in our system k=5, to produce our 

projection for the rest of the day. 

Once we have our top k, in ranked order based upon the 

similarity function, the least distance one first followed by 

the others in ascending distance order. We produce our 

prediction by taking a weighted average of the top k nearest 

historic days. 

𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛(𝑑1…𝑑𝑘) =
∑ 𝑑𝑖 ∗ 𝑔(𝑖, 𝑘)𝑘
𝑖=1

∑ 𝑔(𝑖, 𝑘)𝑘
𝑖=1

 

 

Equation 4 – Projection Based Upon Top K Days 

 

 

𝑔(𝑖, 𝑘) = [𝑘 − 𝑖 + 1]2 

 

Equation 5 – Weighting Function for Projection 

 

By taking the weighted average, where the weights are 

proportional to the square of the ranked order of the k 

nearest data vectors, we are able to produce a projection for 

the entire day, whose performance will be evaluated in the 

coming sections. [14] [15] 

 

Note that the current day’s data is already known up until 

the current time. Therefore, the entire day’s projection 

before the current time of day is replaced by the actual wait 



 

 

time for the current day, but the projection of the rest of the 

day is produced with satisfying results that we are about to 

share. 

 

But before that here is an example day where it is currently 

11am and we predict the rest of the day, and we see how 

close we are to being on target. 

 

 
Figure 3 - Full Day Projection From 11am vs Actual Day 

 

 

 

 
Figure 4 - Projection for Test Day from 11am 

 

 
Figure 5 - Projection for Test Day from 11am Bar 

 

4.4.1.1 Timing 

Running 160,000 test runs, we are able to create a 

projection for the entire day, within 3 milliseconds. This is 

definitely in the realm of real-time and shows the power of 

streamlined algorithms and their implementations. 

4.4.1.2 Performance 

Our performance has several metrics, we will be basing all 

of our performance around the mean absolute error (MAE) 

of our prediction, where the equation for the is given in 

equation 1. Our performance markers are the MAE for the 

next 10 minutes, for the next hour, and from the current 

time until the end of the day. 

 

A quick note, there is no error for the current wait time, 

since the current wait time would simply be the latest piece 

of data we would have from our data source. 

Our MAE on average for a 10-minute window is under 1 

minute, and our maximal average MAE is 45 seconds. 

 
Figure 6 - MAE for a 10-minute projection from 

different times of day 

 



 

 

Our MAE on average for a one-hour projection does not 

exceed 1 minute and 20 seconds. 

 
Figure 7 - MAE for a 1-hour projection from different 

times of day 

 

Our MAE on average for a full-day projection does not 

exceed 6 minutes, but does improve as the day progresses, 

which is at it should, as more data is added to the system. 

 

 
Figure 8 - MAE for a full-day projection from different 

times of day 

 
Figure 9 - Grouped MAE from different times of day 

 

4.5. Website and User View 

4.5.1 Webpage Map 

Owing to the assistance of the Google Places API, our map 

can reliably retrieve images and GPS coordinates for 

hundreds of millions of places. [16] But because we do not 

have data for every dining location known to that library, 

and because we are using simulated data for the project, we 

are currently unable to give users wait time information 

based on real-world data. Nevertheless, our website can still 

be used as a template for querying and presenting the data 

we only need to get our hands on it. 

 

4.5.2 Webpage Data Presentation 

Figure 2 is a snapshot of the wait times presentation. All of 

the data related to wait times is provided by the server via 

the GET request’s establishment ID. The server sends the 

page an array list that contains a wait time for every 10-

minute increment of the 24-hour day, all tied to the 

establishment ID. The array list also contains the current 

wait time and the wait time 10 minutes from the time of the 

request. These points are used to fill the placeholders for 

“Current Wait Time” and “Wait Time in 10 Minutes”. 

These color coded time indicators change colors depending 

on the wait time; green if the time is less than 10 minutes, 

yellow if the time is between 10 and 20 minutes, and red if 

the time is greater than 20 minutes. This is done through a 

simple inline JavaScript script. 

 

Beneath the wait time numbers is a graph that displays the 

wait times as a function of time. The aforementioned array 

list of wait times in 10 minute intervals fills a placeholder 

on the HTML page. The placeholder uses the Charts.js open 

source JavaScript library to generate the graphic 

dynamically. 

 

Finally, there is a red indicator of the current time, notated 

as “NOW” on the Charts.js graphic, which is pulled from 

the server’s time and adjusted if needed to the users’ local 

time using the browser time. 

5. Summary and Further Work 

5.1. Accomplishments 

We were able to beat out the state of the art [4] when using 

the same 10-minute window MAE metric. We are able to 

do it quickly, and without needing access to any person or 

their smart device directly. We were able to do this without 

any proprietary technology, rather our own research and 

bringing together the state of the art and improving upon it. 

5.2. Improvements 

We were not able to have access to the Wi-Fi data as ideally 

as we wished, some things were pushed back a bit by OIT, 



 

 

such as scrubbing of data for privacy concerns. We could in 

the future work of this research, use the Wi-Fi data to 

further optimize and enhance our work. 

5.3. Future plans 

We plan in the future to pursue enhancing this research, 

with the possible release as either a paper in a reputable 

journal, or perhaps venture into a marketable product. This 

will be contingent upon following through with of the 

outlined improvements stated in the previous section.  
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